Development of a Novel Biphasic CO₂ Absorption Process with Multiple Stages of Liquid–Liquid Phase Separation for Post-Combustion Carbon Capture

(DOE/NETL Agreement No. DE-FE0026434)

Yongqi Lu

Illinois State Geological Survey University of Illinois at Urbana-Champaign

2017 NETL CO₂ Capture Technology Project Review Meeting

Pittsburgh PA • August 22, 2017

Acknowledgements

DOE/NETL Project Manager: Andrew Jones University of Illinois:

- Kevin O'Brien (Co-PI, PhD, ISTC Director)
- Hong Lu (PhD, Chemical/Environmental Engineer)
- David Ruhter (MS, Lab Manager)
- Yang Du (PhD, Chemical/Environmental Engineer)
- Qing Ye (PhD Student)
- Wei Zheng (PhD, Senior Chemist)
- Brajendra K Sharma (PhD, Senior Chemical Engineer)
- Viktoriya Gomilko (MS, Assistant Research Chemist)
- Joe Pickowitz (Environmental Engineer)
- Santanu Chaudhuri (Co-PI, PhD, Principal Research Scientist)
- Naida Lacevic (PhD, Lead Simulation Specialist)

Trimeric Corporation:

- Ray McKaskle (Subaward PI; P.E., Senior Chemical engine
- Darshan Sachde (PhD, Senior Chemical Engineer)
- Kevin Fisher (VP, P.E., Senior Chemical Engineer)
- Andrew Sexton (PhD, P.E., Senior Chemical Engineer)

2

Project Overview

Project objectives

- Develop new biphasic solvents
- Demonstrate process concept via lab/bench column testing
- Generate engineering and scale-up data
- > High-level process and techno-economic analysis (TEA)

Project duration

- BP1: 10/1/15 to 06/30/17 (21 months)
- > BP2: 07/1/17 to 12/31/18 (18 months)

Funding profile

DOE funding	1,999,996		
BP1	1,079,663		
BP2	920,333		
Recipient cost share	501,052		
BP1	269,920		
BP2	231,132		
Total	2,501,048		

Project Participants

University of Illinois

- Illinois State Geological Survey
 - Solvent development
 - Solvent equilibria, kinetics, and properties measurements
 - Absorption and desorption column testing
 - Process modeling

Illinois Sustainable Technology Center

• Assessment of solvent stability and corrosion impacts

Applied Research Institute

• Molecular dynamics simulation study for solvent screening

Trimeric Corporation

Process feasibility and high-level TEA

Biphasic vs. Conventional Absorption Process

Rich

phase

Biphasic Absorption Process

Stripper'

(90-140°C)

Steam

Reboiler

Lean

phase

Cooler

LLPS

CO₂-rich solvent

Flue gas

LLPS (opt.)

Benefits of biphasic process in stripper:

- Reduced equipment size due to reduced mass of solvent to be regenerated
- Reduced energy use and compression requirement due to reduced mass of solvent, high CO₂ loading, and elevated stripping pressure

Benefits in absorber via phase separation and biphasic solvent development:

- Reduced viscosity with separation of rich, viscous phase improves mass transfer rate and allows use of viscous solvents
- Reduced equipment size

Biphasic CO₂ Absorption Process with Multi-Stages of Liquid-Liquid Phase Separation

Proposed Biphasic CO₂ Absorption Process (BiCAP)

Novel Biphasic Solvents

Amine-based solvent blends:

- Tunable phase transition behavior with a new group of solvent formulations
- Consider multi-criteria (capacity, rate, CO₂ enrichment %, desorption pressure, stability, corrosion, viscosity, and availability/cost)
- Allow multiple steps of phase separation
- In aqueous form suitable for humid flue gas application

Advantages of BiCAP for Post-Combustion CO₂ Capture

BiCAP Solvents:

- Phase transition behavior tunable based on a unique solvent formulation (proprietary), allowing for a wider selection of solvent blends
- Stable with oxygen and at high temperature (e.g., 150 °C)

Absorption process:

Multiple phase separators reduce solvent viscosity and CO₂ loading by removing the more viscous rich-phase solvent during absorption, allowing for use of relatively high viscosity solvents

Desorption process:

- High working capacity due to the absorbed CO₂ enriched in one phase as feed solution to the stripper
- Reduced mass of solvent for regeneration and elevated CO₂ stripping pressure result in lower heat duty and compression work requirements

Project Work Plan

BP1 Planned Tasks Completed on Schedule

Project Tasks	Progress to date	
Task 1. Project planning & management		
 2. Screening & characterization of biphasic solvents (~50 solvents) Screening on CO₂ absorption & phase transition Screening on CO₂ desorption pressure Molecular dynamics simulation studies 	Complete (>80 formulations evaluated)	
 3. Phase equilibria, absorption kinetics, and solvent properties (5-10 solvents) VLE measurement Absorption kinetics measurement Solvent properties measurement 	Complete (VLE for 10 solvents; kinetics for 6 solvents; viscosity/density for ~80 solvents, heat capacity for 11 solvents; heat of absorption for 10 solvents)	
 4. Determining thermal & oxidation stabilities of solvents (5-10 solvents) Oxidation stability Thermal stability 	Complete (Oxidation stability tests for 6 solvents for 2 weeks; thermal stability tests at 120-150 °C for 10 solvents for ~8 weeks)	
 5. Testing CO₂ absorption & phase separation in a multi-stage packed-bed column (2-3 solvents) Fabrication of experimental system Parametric testing 	Complete (Tested 2 selected biphasic solvents)	
 6. Development of a process sheet and preliminary techno-economic analysis Conceptual process flow sheets Preliminary techno-economic analysis 	Complete (Flow sheets developed and preliminary TEA completed)	

All BP1 Milestones (7) and Success Criteria (3) Succeeded

□ 3 technical Success Criteria for BP1:

BP1: 10/1/15 – 6/30/17 (by Q7):

Identify 2-3 top-performing solvents

(based on phase transition and CO_2 enrichment behavior, CO_2 loading capacity,

absorption kinetics, and viscosity)

Complete lab testing of 2-3 solvents in an absorption column with multi-phase separations:

 CO_2 capacity and kinetics \geq 5 M MEA;

Each LLPS stage \leq 5 min residence time;

 \geq 80% CO₂ enrichment in the rich liquid phase

Demonstrate reliable operability of the multi-stage absorption & phase separation configuration during lab-scale testing

Task 2: Solvent Screening

Working capacity of biphasic solvents:

- Phase separation *decouples* the <u>absorption</u> and <u>desorption</u> steps, resulting in their different solvent working capacities¹
- For comparison purposes, assuming lean and rich CO₂ loadings equivalent to 0.1 and 5 kPa CO₂ equilibrium pressures at 40°C:
 - Absorption working capacity: MEA^{2,3)}
 - Desorption working capacity: 2-4 times > MEA^{2,3)}
- ~98% of absorbed CO₂ concentrated in rich phase liquid for most solvents

Notes:

1) CO₂ working capacity for absorption: difference between CO₂ loadings at absorber top and bottom;

CO₂ working capacity for desorption - difference between CO₂ loadings at desorber top and bottom)

2) Working capacity is estimated based on maintaining lean and rich CO₂ loadings equiv. to 0.1 and 5 kPa CO₂ equilibrium pressures at 40 °C at the top and bottom of absorber or stripper

3) CO_2 working capacity for 5M MEA equiv. to 0.1 and 5 kPa CO_2 equilibrium pressures at 40 °C is estimated at 0.68 mol/kg. Practical MEA lean loading is lower (<0.1 kPa CO_2) and its practical working capacity amounts to 1-1.25 mol/kg.

Task 3: Phase Equilibria, Absorption Kinetics & Solvent Properties: VLE Measurements

VLE data measured under both absorption conditions (30–50 °C) and desorption conditions (100-160 °C)

Viscosity Optimization and Reduction

Most recent solvents have viscosity of CO₂-saturated rich-phase solution <100 cP at 40°C (< 50 cP solvents selected for further testing)</p>

Lean phase viscosity < 9 cP (data not displayed)</p>

Task 4. Stability of Biphasic Solvents: Thermal Stability

Thermal degradation tested (1) at 150 °C for 2 weeks and (2) at 120 and 135 °C for 8 weeks

BiS4 solvent (S66, saturated in 5 kPa CO₂) as an example:

- Stability of BiS4 after 2 weeks at 150 °C
 - 4 19% of BiS4 components degraded vs. 56% MEA loss at 150 °C
 - Stability of BiS4 at 150 °C similar to 5M MEA at 120 °C
- Degradation at 120 and 130 °C for 8 weeks (not shown in figure) revealed a slower but otherwise similar trend to 150 °C

Biphasic Solvent Oxidative Stability

Oxidative degradation tested (1) in 96% O₂-4% CO₂ gas (rich loading) and (2) in 96% O₂-400 ppm CO₂ gas (lean loading) in presence of metal catalysts for 10 days at 50 °C

BiS4 solvent (S66) in 96% O_2 -4% CO₂ gas mixture as an example:

<11% solvent components degraded after 10 days at 50 °C vs. 41% MEA loss (Oxidation rate is <27% of MEA)</p>

Task 5. Laboratory Absorption System with 3-Stages of Packed Beds and LLPS Vessels Fabricated and Tested

- 3 stages (4-in ID, 7-ft packed-bed for each) arranged side by side to accommodate lab ceiling limit
- 3 stages in one vertical column envisioned for practical use

Column Testing of 2 Selected BiCAP Solvents

(3-stages of CO₂ absorption tests with 13 vol.% CO₂ in air at 35 - 40°C)

CO₂ removal rate and loading capacity in the absorption step for the 2 selected solvents (BiS4 and BiS6) exceeded or comparable to 5M MEA under the same L/G and comparable CO₂ lean loading (i.e., corresponding to the same equilibrium P^{*}_{CO2} at 40°C)

Effect of Inter-Stage Rich Phase Withdrawal

- Slightly higher CO₂ removal rate achieved with 1-stage LLPS compared to 3-stage LLPS
- Viscosity of CO₂-saturated rich phase solvent is 45 cP for BiS4 and 35 cP for BiS6; Inter-stage rich phase withdrawal expected to perform better for higher viscosity solvents (e.g., >100 cP)

Task 6. Preliminary Process Analysis

- Aspen Plus model developed by ISGS to simulate BICAP process and generate mass and energy balance data
- Preliminary Process Analysis conducted by Trimeric for a 550 MWe (net) power plant integrated with BiCAP process

Preliminary Estimation of Derating & Parasitic Power Use

		BiCAP	DOE Case 12
Gross Generating Capacity	MWe	726	802
Total Steam Derate	MWe	103	139
Reboiler/Flash Heat Duty	MWth	369	542
Thermal to Electric Energy	MWe/MWth	0.256	0.256
Power Value of Steam	MWe	95	139
Penalty/Power Recovery	MWe	7.6	N/A
Direct Electrical Derate	MWe	39.1	75.2
Compression Duty	MWe	25.8	44.9
Other (Pumps, Fans, etc.)	MWe	13.3	30.3
Total Derate for CO ₂ Capture	MWe	142	214
Total parasitic use for entire plant	MWe	176	252
Net Electricity Produced	MWe	550	550

Capture parasitic power use: 20% of gross output (142/726) for BiCAP process vs. 27% (214/802) in DOE Case 12

□ Total derate for CO₂ capture with BiCAP is 34% lower than Case 12

Preliminary Economic Comparison: BiCAP vs. DOE Case 12

2007\$ (x1,000\$)	BiCAP	DOE Case 12 ²	Difference vs. Case 12
Total Plant Cost	\$1,130,000	\$1,600,000	-29%
CO ₂ Capture and Compression	\$378,000	\$469,000	-19%
Total Fixed Operating Costs	\$39,900	\$53,200	-25%
Total Variable Operating Costs	\$30,300	\$35,700	-15%
Solvent Make-Up Costs Due to Degradation	\$2,061	\$1,017	103%
Total Fuel Costs	\$72,800	\$80,400	-10%
Coal Flowrate (lb/hr)	512,000	566,000	-10%
COE ¹ (mills/kWh, 2007\$)	83	107	-22%
Cost of CO ₂ Captured ¹ (\$/tonne, 2007\$)	\$28	\$49	-43%
Cost of CO ₂ Avoided ¹ (\$/tonne, 2007\$)	\$35	\$70	-50%

¹ Includes Transportation, Storage, and Monitoring;

² DOE/NETL-2010/1397, Revision 2, Nov. 2010; Revision 2a, Sep. 2013

Compared with DOE Case 12, BiCAP process can achieve:

- 22% reduction in COE;
- > 43% reduction in cost of CO₂ captured
- > 50% reduction in cost of CO_2 avoided

Future Work Plan for This Project

Parametric testing of high-pressure flash and stripping (by 6/30/18) Task 7. Testing CO₂ desorption in a high pressure flash and stripping column (2 - 3 solvents)

- Fabrication of a flash and stripper system
- > Parametric testing of CO_2 flash and stripping
- Modeling of CO₂ flash and stripping

Assessing solvent corrosion impact on equipment (by 3/31/18)

Task 8. Assessing the impact of solvent on equipment corrosion (2 - 3 solvents)

- >Under absorption conditions
- Under desorption conditions

Process analysis and techno-economic analysis (by 12/31/18)

Task 9. Final Techno-Economic Analysis

- Updated process simulation and mass and energy balance calculations
- High-level cost and sensitivity analysis

BiCAP Technology Development Vision

Summaries

Biphasic Solvents

- Phase transition behavior tunable with unique solvent formulation
- □ Working capacity for CO_2 desorption: >2 times > MEA process
- Desorption pressure: 3-4 times > MEA process
- □ Stable with O₂ and at high temperature
- □ Acceptable viscosity of CO_2 -loaded rich-phase solvent (≤ 50 cP)

BiCAP Process

- Reduces total parasitic power use for CO₂ capture by 34% compared with DOE Case 12
- Reduces COE by 22% and cost of CO₂ capture by 43% compared with DOE Case 12

Thank you!

Questions / Comments?